# Влияние моделей ионосферы и дифференциальных кодовых задержек на точность координатного решения потребителей ГЛОНАСС

#### А.А. Аржанников, В.Д. Глотов, В.В. Митрикас

ИАЦ КВНО, АО «ЦНИИмаш», г. Королёв, Московская область

Целью данной работы является оценка улучшения точности местоопределения ГЛОНАСС при использовании различных моделей ионосферы, а также межсигнальных С1С-С1Р [5] и межчастотных С1Р-С2Р [5] дифференциальных кодовых задержек (англ. DCB – differential code bias). При этом использовались измерения всех навигационных сигналов ГЛОНАСС на частотах L1 и L2, формируемые коммерческими навигационными приемниками. Задержки АФНС, передаваемые потребителям в навигационных сообщениях ГЛОНАСС, существенно отличаются от наблюдаемых значений, однако в обозримом будущем планируется периодический пересчет задержек по измерениям Российских сетей станций и передача в кадре уточненных значений. Актуальность работы обусловлена тем, что позволяет заранее спрогнозировать эффект от планируемого нововведения. Для данной цели было проведено исследование по обработке реальных данных 300 глобально распределенных беззапросных измерительных станций (БИС) на 8-суточном интервале в январе 2023 г.

По оценкам ИАЦ КВНО погрешность задержки АФНС в кадре ГЛОНАСС значительно выше в сравнении с другими ГНСС (СКП более 0.5м для ГЛОНАСС и менее 0.1м для остальных ГНСС) [3], поэтому существует потенциал улучшения точности местоопределения за счет уточнения данных задержек. Задержки DCB являются медленно меняющимися величинами (для примера, у КА GPS пересчет задержек в кадре происходит примерно раз в 3-4 месяца, у КА BeiDou - раз в месяц). В работе схематично представлена методика уточнения межсигнальных C1C-C1P и межчастотных C1P-C2P задержек АФНС ГЛОНАСС с помощью моделирования локальной ионосферы. Из-за литерной зависимости ГЛОНАСС необходимо наличие эталона, в качестве которого использовался калиброванный приемник SU0\* ВНИИФТРИ [2]. С помощью описанной методики были получены значения задержек DCB за 24-31 января 2023г. для эксперимента.

Совместно с расчетом задержек DCB в ИАЦ КВНО ежедневно происходит расчет глобальных карт полного электронного содержания (ПЭС, англ. TEC - Total Electron Content) в ионосфере [1, 3]. Глобальные карты ионосферы по расчетам ИАЦ КВНО публикуются в файлах формата IONEX [1], доступна статистика за последние 5 лет. На 24.01.2023 проведен расчет оценки точности глобальных ионосферных карт ИАЦ КВНО относительно карт трех центров анализа международной службы ГНСС IGS: СКО по всей территории Земли ~0.6 м, над материками ~0.5м. Для сравнения, карты центров IGS согласуются друг с другом с СКО 0.5 – 0.7м, СКО модели Клобучара из кадра GPS ~2.1м, среднесуточная вертикальная ионосферная задержка ~5.6м. Используя

глобальные карты ПЭС ионосферы, в ИАЦ КВНО ежедневно происходит оценка вклада ионосферы в псевдодальность КА, затем с учетом геометрического фактора (PDOP) пересчет в пространственные карты распределения вклада ионосферной ошибки в точность одночастотных потребителей всех ГНСС [4]. Представлены результаты расчета за последний год. В частности, за 24.01.2023 среднесуточный вклад ионосферы в точность GPS составил 2.6 м по территории России, 4.8 м глобально; для ГЛОНАСС 2.7 м по территории России, 5.7 м глобально. Среднесуточная глобальная ионосферная ошибка выше российской за счет высокой активности ионосферы на экваториальных широтах, а также за счет соотношения PDOP ГЛОНАСС (глобальный ~2.0, по России ~1.8).

данного исследования В ИАЦ КВНО B рамках была проведена экспериментальная оценка фактического влияния моделей ионосферы и задержек DCB на точность координатного решения потребителей ГЛОНАСС, в которой использовались данные 300 БИС (250 глобально распределенных 50 станций сети Госкорпорации станций сети IGS И «Роскосмос» преимущественно на территории России), расчет проводился на 8-суточном интервале 24-31 января 2023г. Использовались только кодовые измерения, калибровка приемников не проводилась, применялись расчетные значения задержек DCB КА ГЛОНАСС, полученные с помощью калиброванного приемника, а также глобальная карта ПЭС ионосферы ИАЦ КВНО и ионосферная модель Клобучара из кадра GPS. В качестве опорных координат БИС для оценок точности использовались высокоточные координаты станций с погрешностью Относительно не более нескольких сантиметров. них среднеквадратичные погрешности (СКП) рассчитывались координатных решений по каждой станции глобальной сети. Вклад каждого фактора предположении, погрешность рассчитывался В что суммарная пространственная и вычисляется как корень суммы квадратов составляющих.

В базовом расчете (при полном неучете ионосферы и задержек DCB) точности местоопределения ГЛОНАСС для измерений C1C и C1P (в обозначениях RINEX-3 [5]) получились примерно одинаковыми (СКП по России ~7.2 м, глобально ~9.0 м).

Улучшение точности (базового расчета) одночастотного потребителя С1С ГЛОНАСС за счет учета межсигнальных задержек С1С-С1Р составило 2.2% по России, 3.7% глобально (вклад ~1.9м). При расчете к штатным частотновременным поправкам (ЧВП) КА ГЛОНАСС были прибавлены межсигнальные С1С-С1Р задержки DCB<sub>C1C-C1P, SU0</sub>

Улучшение точности (базового расчета) одночастотного потребителя ГЛОНАСС за счет корректных межчастотных C1P-C2P задержек АФНС составило 13.2% по России (вклад ~3.6м), глобально 6.8% (вклад 3.2м). В расчете предполагалось, что ЧВП в кадре ГЛОНАСС привязаны к C1P, но содержат ошибку паспортных значений АФНС, поэтому для одночастотного решения C1P к ЧВП была применена коррекция 1.53 · (DCB<sub>C2P-C1P, SU0</sub> – T<sub>АФНС</sub>).

Улучшение точности (базового расчета) одночастотного потребителя за счет использования ионосферы составило для ГЛОНАСС с использованием карт ИАЦ КВНО: по России 16% (вклад 4м), глобально 34% (вклад 6.8 м); для

ГЛОНАСС с использованием модели Клобучара: по России 5% (вклад 2.3м), глобально 26% (вклад 6м). Аналогичный расчет для GPS с использованием карт ИАЦ КВНО: по России 56% (вклад 3.9м), глобально 62% (вклад 4.8м); для GPS с использованием модели Клобучара: по России 4% (вклад 1.9м), глобально 24% (вклад 3.3м).

Для оценки теоретически достижимой точности одночастотного приемника был проведен расчет за тот же период для калиброванного приемника SU0\* (шумовые погрешности на каждой частоте ~0.2 м) и смоделированной штатной ЭВИ ГЛОНАСС на основе апостериорной ЭВИ ИАЦ КВНО, привязанной к измерениям C1P калиброванного приемника, использовались только двухчастотные КА ГЛОНАСС (PDOP ~2.48). В одночастотном режиме C1P с учетом модели ионосферы ИАЦ КВНО погрешность координат составила ~1.2м, двухчастотном режиме С1Р-С2Р ~1.5м. При полной двухчастотной В орбитальной группировке ГЛОНАСС (PDOP ~1.9) в январе 2023г. теоретически пространственная погрешность координат С1Р ГЛОНАСС достижимая идеального приемника с нулевыми шумовыми погрешностями составила бы ~0.8м за счет ошибок моделирования ионосферы.

### Литература

- Раздел "Ионосфера" на сайте ИАЦ КВНО АО ЦНИИмаш [Электронный pecypc]. URL: <u>https://www.glonass-iac.ru/iono/</u> (дата обращения: 01.02.2023).
- Митрикас В. В., Скакун И. О., Аржанников А. А., Федотов В. Н. Применение калиброванного навигационного приемника для оценки погрешности измерения за счёт космического сегмента (SISRE) ГЛОНАСС // Альманах современной метрологии. - 2021. - № 2 (26). -С. 79–103.
- 3) А. А. Аржанников, В. Д. Глотов, В. В. Митрикас / Вычисление дифференциальных кодовых задержек и построение карт ионосферы с помощью ГНСС // Труды ИПА РАН. 2022. Вып. 60. С. 3–11 [https://www.glonass-iac.ru/about/publications/detail.php?ID=4023]
- 4) А. А. Аржанников, В. Д. Глотов, В. В. Митрикас, А.С. Свиридов / Влияние ионосферы на точность координатного решения потребителя, построение глобальных карт ионосферы по беззапросным измерениям ГНСС // 26-я Международная научная конференция «Системный анализ, управление и навигация» 2022 г. [https://www.glonass-iac.ru/about/publications/detail.php?ID=4000
- 5) RINEX. The Receiver Independent Exchange Format Version 3.05. International GNSS Service. [https://files.igs.org/pub/data/format/rinex305.pdf]









# Влияние моделей ионосферы и дифференциальных кодовых задержек на точность координатного решения потребителей ГЛОНАСС

# А.А. Аржанников, В.Д. Глотов, В.В. Митрикас ИАЦ КВНО АО «ЦНИИмаш»

Десятая Всероссийская конференция с международным участием «Фундаментальное и прикладное координатно-временное и навигационное обеспечение» (КВНО-2023) г. Санкт-Петербург, 17 – 21 апреля 2023 г.



\* раздел «Ионосфера» на сайте ИАЦ КВНО <u>https://www.glonass-iac.ru/iono/</u>

# План доклада

- ЦЕЛЬ. Оценить вклад в ошибку местоопределения ГЛОНАСС при использовании глобальных карт ионосферы (ИАЦ КВНО, модель Клобучара из кадра GPS), а также межсигнальных C1C-C1P [5] и межчастотных аппаратных задержек C1P-C2P [5] (АФНС), которые планируется периодически уточнять и передавать в навигационном кадре ГЛОНАСС
- > Методика расчета межчастотных задержек АФНС ГЛОНАСС (DCB):
  - Локальные карты ионосферы и DCB по расчетам ИАЦ КВНО
  - Текущая точность задержки АФНС в кадре ГЛОНАСС, сравнение с другими ГНСС
  - Влияние литерной зависимости ГЛОНАСС. Калиброванный приемник ВНИИФТРИ

### Глобальные карты ионосферы по расчетам ИАЦ КВНО:

- Метод расчета глобальных карт ИАЦ (2018-2023), сравнение с картами центров IGS
- Пересчет глобальных карт ионосферы в пространственные карты распределения ионосферной ошибки для ГЛОНАСС и GPS. Динамика вклада ошибки за последний год

### Эксперимент по фактической оценке при участии 300 станций на 8-суточном интервале:

- Всего 300 станций, из них 50 Российских, ГЛОНАСС\GPS, одночастотные\двухчастотные
- Вклад ионосферы: глобальная карта ИАЦ КВНО \ модель Клобучара \ iono-free
- Вклад межсигнальных задержек C1C-C1P (из кадра ГЛОНАСС) в точность
- Вклад межчастотных задержек C1P-C2P в точность (задержка АФНС из кадра ГЛОНАСС)
- \*В расчетах калибровка НАП не проводилась (расчет для обычного кодового потребителя).
  Смоделированные задержки из кадра рассчитаны с помощью калиброванного приемника

### Выводы

5. RINEX. The Receiver Independent Exchange Format Version 3.05. International GNSS Service [https://files.igs.org/pub/data/format/rinex305.pdf]

# Однослойная модель ионосферы



## Алгоритм уточнения межчастотных дифференциальных кодовых задержек КА ГЛОНАСС (АФНС) с помощью моделирования локальной ионосферы



ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/YYDDD/rapid/

### Точность задержки АФНС в кадре ГЛОНАСС и др. ГНСС, сравнение с DCB ИАЦ КВНО и IGS



- (-) Погрешность значений АФНС ГЛОНАСС в навигационных кадрах ( > 0.5 м) (для других ГНСС <=0.1 м)
- (-) Для ГЛОНАСС задержка АФНС паспортное значение КА
- (+) Есть потенциал для улучшения точности потребителей ГЛОНАСС

\* А. А. Аржанников, В. Д. Глотов, В. В. Митрикас. Вычисление дифференциальных кодовых задержек и построение карт ионосферы с помощью ГНСС // Труды ИРА РАН. — 2022. — Вып. 60. — С. 3–11.

### Как часто происходит пересчет межчастотных задержек КА (Tgd) в кадрах других ГНСС?



# Влияние литерной зависимости ГЛОНАСС на расчет DCB. Потребность в



СКО дифференциальных кодовых задержек ГЛОНАСС относительно усредненных значений, м

| СКО ГЛОНАСС <b>DCB C1P-C2P</b> , метры |       |           |           |      |  |  |
|----------------------------------------|-------|-----------|-----------|------|--|--|
| JAVAD                                  | LEICA |           | TRI_NETR9 |      |  |  |
| (54)                                   | (10)  | SEPT (41) | (59)      | (1)  |  |  |
| 0,15                                   | 0,20  | 0,30      | 0,18      | 0,23 |  |  |

| СКО ГЛОНАСС <b>DCB C1C-C2C</b> , метры |            |           |                          |      |  |  |
|----------------------------------------|------------|-----------|--------------------------|------|--|--|
| JAVAD<br>(57)                          | LEICA (31) | SEPT (43) | TRI_NETR9<br>(61) SU0* ( |      |  |  |
| 0,13                                   | 0,18       | 0,28      | 0,25                     | 0,41 |  |  |

СКП дифференциальных кодовых задержек GPS относительно усредненных значений, м

| СКО GPS <b>DCB C1W-C2W</b> , метры |           |           |                   |          |  |  |
|------------------------------------|-----------|-----------|-------------------|----------|--|--|
| JAVAD<br>(59)                      | LEICA (6) | SEPT (44) | TRI_NETR9<br>(12) | SU0* (1) |  |  |
| 0,05                               | 0,08      | 0,05      | 0,06              | 0,01     |  |  |

\*Митрикас В. В., Скакун И. О., Аржанников А. А., Федотов В. Н. Применение калиброванного навигационного приемника для оценки погрешности измерения за счёт космического сегмента (SISRE) ГЛОНАСС // Альманах современной метрологии. - 2021. - № 2 (26). - С. 79–103.

7

<sup>22</sup>(-) В зависимости от типа и ПО НАП отличия для ГЛО́НАСС достигают 0.7 м (крайние литеры) (+) Калиброванный приемник может решить проблему

TRI NETR9

— \_ \_ МЕАN ИАЦ

# Построение глобальных ионосферных карт (GIM)

В ИАЦ КВНО для уточнения параметров глобальных карт ПЭС ионосферы используются открытые измерения около 300 станций IGS, результаты публикуются в формате IONEX \*

В качестве модели используется разложение VTEC по сферическим гармоникам (порядок разложения  $n_{max}$  = 15; 12 наборов коэффициентов гармоник для суточного интервала):

 $VTEC(\varphi, t) = \sum_{n=0}^{n_{max}} \sum_{m=0}^{n} P_{nm} \sin \varphi \{C_{nm} \cos mt + S_{nm} \sin mt\}$ 

 $\varphi$  - широта  $t = \lambda - \lambda_{SUN}$  - солнечно-фиксированная долгота Распределение ошибок определения ионосферы соответствует распределению станций (над океанами ошибка расчета выше).

1 ед. ТЕСи = 10<sup>16</sup> электронов / кв. метр, что соответствует задержке в ~16 см для L1

### Глобальная карта ионосферы ИАЦ КВНО, 24 янв. 2023, ТЕСи

Ошибка расчета, 24 янв. 2023, ТЕСи



\* Раздел "Ионосфера" на сайте ИАЦ КВНО <u>https://www.glonass-iac.ru/iono/</u> Файлы IONEX ИАЦ КВНО публикуются 2018-2023 гг.

## Точность расчета глобальных карт ионосферы (GIM): ИАЦ КВНО vs IGS vs кадр GPS (24 янв. 2023)

Матрицы взаимных СКО, метры L1

| По всей территории, метры |      |      |      |          |          |  |  |  |
|---------------------------|------|------|------|----------|----------|--|--|--|
| Карта                     | CODE | WHU  | JPL  | ИАЦ КВНО | Кадр GPS |  |  |  |
| CODE                      |      | 0.55 | 0.63 | 0.67     | 2.04     |  |  |  |
| WHU                       | 0.55 |      | 0.57 | 0.65     | 2.25     |  |  |  |
| JPL                       | 0.63 | 0.57 |      | 0.64     | 2.22     |  |  |  |
| ИАЦ КВНО                  | 0.67 | 0.65 | 0.64 |          | 2.08     |  |  |  |
| Кадр GPS                  | 2.04 | 2.25 | 2.22 | 2.08     |          |  |  |  |

Над материками, метры Карта CODE WHU ИАЦ КВНО Кадр GPS JPL CODE 0.49 0.58 2.05 0.46 WHU 0.50 0.54 2.21 0.49 JPL 0.58 0.50 0.53 2.22 ИАЦ КВНО 0.46 0.54 0.53 2.11 Кадр GPS 2.05 2.21 2.22 2.11

Точность расчета глобальной ионосферы ИАЦ КВНО ~0.6 м. Над материкам ~0.5 м

Глобальные карты IGS согласуются друг с другом на уровне 0.5 – 0.7 м

Средняя вертикальная ион. задержка: 5.6 м

Модель Клобучара в кадре GPS ~2.1 м

Глобальная карта ионосферы ИАЦ КВНО, 24 янв. 2023, ТЕСи Модель ионосферы из кадра GPS, 24 янв. 2023, ТЕСи





Точность расчета глобальных карт ионосферы ИАЦ КВНО сравнима с существующими аналогами

### Пересчет GIM в пространственные карты ионосферной ошибки (3d) для ГЛОНАСС и GPS за 24 янв. 2023г, метры



|                |                             |                               |                     | - 2.0                    | ( 1.0    |
|----------------|-----------------------------|-------------------------------|---------------------|--------------------------|----------|
| 15<br>14<br>13 | ГЛОН<br>Ошиб<br>сч<br>ионос | НАСС<br>бка за<br>ет<br>сферы | Без<br>модели,<br>м | + мод.<br>Клобучар,<br>м | Улучш, % |
| 12             |                             | Сутки                         | 5.7                 | 3.0                      | 47%      |
| 9              | Земля                       | День                          | 7.3                 | 3.4                      | 54%      |
| - 8<br>- 7     |                             | Ночь                          | 4.1                 | 2.7                      | 34%      |
| 6<br>5<br>4    | Россия                      | Сутки                         | 2.7                 | 2.4                      | 10%      |
| 2              |                             | День                          | 3.3                 | 2.8                      | 12%      |
| 1              |                             | Ночь                          | 1.7                 | 1.7                      | 0%       |

#### с учетом модели ионосферы (из кадра GPS) **PR(3-M)** \* **PDOP**



# Без учета модели ионосферы



# GPS, PDOP = $1.6 \setminus 1.6$

| 5      | G<br>Ошиб<br>сч<br>ионос | РЅ<br>бка за<br>ет<br>сферы | Без<br>модели,<br>м | + мод.<br>Клобучар,<br>м | Улучш, % |
|--------|--------------------------|-----------------------------|---------------------|--------------------------|----------|
| 1<br>0 |                          | Сутки                       | 4.8                 | 2.6                      | 48%      |
|        | Земля                    | День                        | 6.1                 | 3.2                      | 55%      |
|        |                          | Ночь                        | 3.3                 | 1.6                      | 34%      |
|        |                          | Сутки                       | 2.6                 | 2.4                      | 4%       |
|        | Россия                   | День                        | 3.2                 | 2.9                      | 8%       |
|        |                          | Ночь                        | 1.7                 | 1.7                      | 0%       |

#### с учетом модели ионосферы (из кадра GPS) PR(Э-M) **PDOP**



\*PR -pseudorange

### Средняя вертикальная ионосферная задержка L1 на 1 апр. 2022г: 5.6 м

# Расчет вклада ионосферы в ошибку местоопределения ГЛОНАСС при пересчете из глобальных карт ионосферы янв.2022-янв.2023

Вклад ионосферы в точность местоопределения ГЛОНАСС по дням, янв. 2022 - янв. 2023, метры.



- В ИАЦ КВНО расчет пространственных карт ионосферных ошибок и среднесуточного вклада ионосферы в ошибку местоопределения ГЛОНАСС происходит ежедневно из глобальных карт ионосферы, за 24 янв. 2023г. по России 2.7м, глобально 5.7м
- Средняя глобальная ионосферная ошибка выше Российской за счет высокой активности ионосферы на экваториальных широтах, а также за счет соотношения PDOP ГЛОНАСС (~2.0 / 1.8)

# Эксперимент 2023: фактическая оценка учета аппаратных задержек КА и параметров ионосферы в точность местоопределения (300 станций)

В расчете участвовало 300 станций: 250 IGS + 45 СДКМ (РКС) + 5 Доверие (ИАЦ). Из них 50 станций на территории России. Расчет проводился за 8 суток с 24.01.2023 по 31.01.2023



### БАЗОВЫЙ РАСЧЕТ ГЛОНАСС без учета ионосферы и аппаратных задержек С1С, С2С, С1Р, С2Р



|             | Средние значения, ГЛОНАСС, PDOP <= 6, метры |               |             |         |               |                 |  |  |
|-------------|---------------------------------------------|---------------|-------------|---------|---------------|-----------------|--|--|
| Тип расчета | Рос                                         | сия, 50 стані | ций         | Глобал  | ьно, 300 стаі | нций            |  |  |
|             | Медиана                                     | СКП           | Доступность | Медиана | СКП           | Доступно<br>сть |  |  |
| GLO C1C     | 5.50                                        | 7.19          | 99.0%       | 6.99    | 9.02          | 99.1%           |  |  |
| GLO C1P     | 5.46                                        | 7.25          | 98.8%       | 6.97    | 9.00          | 99.0%           |  |  |
| GLO C2C     | 6.88                                        | 14.67         | 98.9%       | 10.06   | 14.31         | 97.3%           |  |  |
| GLO C2P     | 6.50                                        | 10.17         | 98.5%       | 9.81    | 13.52         | 96.8%           |  |  |

ЧВП в кадре ГЛОНАСС привязаны к С1Р, поэтому точность по L2 без учета аппаратных задержек хуже L1.

Россия 7.2 м)

С1С и С1Р примерно сравнимы (СКП глобально 9 м,

С2С незначительно уступает С2Р (глобально 14.3 м \ 13.5м, по России 14.6 м \ 10.2 м)

### Улучшение точности ГЛОНАСС С1Р за счет использования корректной межчастотной задержки АФНС



|               | Средние значения, ГЛОНАСС, PDOP <= 6, |            |                        |      |  |  |  |
|---------------|---------------------------------------|------------|------------------------|------|--|--|--|
| Тип расцета   | метры                                 |            |                        |      |  |  |  |
|               | Россия,                               | 50 станций | Глобально, 300 станций |      |  |  |  |
|               | Медиана                               | СКП        | Медиана                | СКП  |  |  |  |
| GLO C1P       | 5.46                                  | 7.25       | 6.97                   | 9.00 |  |  |  |
| GLO C1P dAFNS | 4.45                                  | 6.29       | 6.33                   | 8.39 |  |  |  |
| Улучшение, %  | 18.5%                                 | 13.2%      | 9.1%                   | 6.8% |  |  |  |
| Вклад dAFNS   | 3.17                                  | 3.60       | 2.90                   | 3.26 |  |  |  |

ЧВП в кадре ГЛОНАСС привязаны к С1Р, но содержат ошибку паспортных задержек АФНС Перерасчет (C1P dAFNS) был проведен при учете значений DCB (C1P-C2P) калиброванного приемника ВНИИФТРИ SU0\*

$$\operatorname{Err}_{A\Phi HC,C1P} = k_2 \cdot (\operatorname{DCB}_{SU0,C2P-C1P}^{SC} - T_{A\Phi HC}) \simeq 1.53 \cdot \Delta T_{A\Phi HC}$$

При корректном значении межчастотной задержки АФНС улучшение точности С1Р составило 6.8 % глобально (вклад 3.2м ) и 13% по территории России (вклад 3.6 м) 14

### Улучшение точности ГЛОНАСС С1С за счет использования корректной межчастотной задержки АФНС и межсигнальной задержки С1С-С1Р



|                              | Средние значения, ГЛОНАСС, PDOP <= 6, |            |            |             |  |
|------------------------------|---------------------------------------|------------|------------|-------------|--|
| Тип расчета                  |                                       | метр       | Ы          |             |  |
| i in pue le lu               | Россия, 5                             | 60 станций | Глобально, | 300 станций |  |
|                              | Медиана                               | СКП        | Медиана    | СКП         |  |
| GLO C1C                      | 5.50                                  | 7.19       | 6.99       | 9.02        |  |
| GLO C1C DCB_C1_P1            | 5.24                                  | 6.92       | 6.80       | 8.82        |  |
| GLO C1C DCB_C1_P1 dAFNS      | 4.35                                  | 6.07       | 6.22       | 8.27        |  |
| DCB_C1_P1, улучшение %       | 4.7%                                  | 3.7%       | 2.8%       | 2.2%        |  |
| DCB_C1_P1, вклад, м          | 1.7                                   | 1.9        | 1.6        | 1.9         |  |
| DCB_C1_P1 dAFNS, улучшение % | 20.9%                                 | 15.6%      | 10.9%      | 8.3%        |  |
| DCB_C1_P1 dAFNS, вклад, м    | 3.4                                   | 3.9        | 3.2        | 3.6         |  |

Помимо учета корректной <sup>№</sup> межчастотной задержки АФНС, для С1С необходимо учитывать межсигнальную задержку DCB (С1С-С1Р), которая была рассчитана по калиброванному приемнику.

Учет межсигнальной задержки С1С-С1Р незначительно улучшает точность решения (2-4%, вклад ошибки 1.9 м).

Корректная межчастотная задержка АФНС значительно улучшает точность С1С: 8.3% глобально (вклад 3.6м), 15.6% на территории России (вклад 3.9м)

### Улучшение точности ГЛОНАСС С1Р за счет использования параметров ионосферы (глобальная карта ИАЦ КВНО, модель Клобучара из кадра GPS)



| JFNG<br>WUH2<br>WUH2<br>SALU<br>POHN<br>AASCG<br>AAACD<br>AAACD<br>AAACD<br>FFTABV<br>XOUS<br>XOUS<br>FFTABV<br>XOUS<br>FFTABV<br>XOUS<br>FFTABV<br>AACD<br>FFTCA<br>PERC | CIBG<br>HARB<br>BRKN<br>TSK2<br>NRC1<br>PDEL<br>ISBA<br>MTKA | MGUE<br>SGPO<br>UTQI<br>AZU1<br>RGDG<br>SASK<br>AUCK<br>STJ2<br>YARR | DUBO<br>ALBH<br>STK2<br>KITG<br>SCTB<br>SCTB<br>CZTG<br>COMO | SYM1<br>MET3<br>METG<br>UNBD<br>NYA1<br>CEBR<br>DAV1 | NANNO<br>BORT<br>STELL<br>STELL<br>STELL<br>STELL<br>ZIM3<br>KIRO<br>DLF1<br>ZIM3<br>STEL<br>DLF1<br>LED1<br>LED1<br>LED1<br>LED1<br>STEL<br>DLF1<br>STEL<br>NM2<br>STEL<br>TTXK<br>RSND<br>ORBG<br>SVPL<br>TTXK<br>RSND<br>VOLP<br>TTXK<br>SSD1<br>TTXK<br>SSD1<br>TTXK<br>SSD1<br>TTXK<br>SSD1<br>TTXK<br>SSD2<br>SSD1<br>TTXK<br>SSD1<br>TTXK<br>SSD2<br>SSD2<br>SSD2<br>SSD2<br>SSD2<br>SSD2<br>SSD2<br>SSD |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           | Средние                                                      | значения, ГЛ                                                         | OHACC, PD                                                    | OOP <= 6,                                            | Модель ионосферы Клоб <del>у</del> чара из                                                                                                                                                                                                                                                                                                                                                                      |
| Тип расчета                                                                                                                                                               |                                                              | метр                                                                 | Ы                                                            |                                                      | кадра GPS незначительно улучшает                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                           | Россия, !                                                    | 50 станций                                                           | Глобально,                                                   | 300 станций                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                           | Медиана                                                      | СКП                                                                  | Медиана                                                      | СКП                                                  | точноств стр на территории россии                                                                                                                                                                                                                                                                                                                                                                               |
| GLO C1P                                                                                                                                                                   | 5.46                                                         | 7.25                                                                 | 6.97                                                         | 9.00                                                 | (5%) и значительно глобально (26%)                                                                                                                                                                                                                                                                                                                                                                              |
| GLO C1P IONEX_KLOB                                                                                                                                                        | 5.36                                                         | 6.89                                                                 | 5.13                                                         | 6.63                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GLO C1P IONEX_IAC                                                                                                                                                         | 4.53                                                         | 6.05                                                                 | 4.49                                                         | 5.94                                                 | плооальная карта ионосферы инд                                                                                                                                                                                                                                                                                                                                                                                  |
| <br>IONEX_KLOB, улучшение %                                                                                                                                               | 1.9%                                                         | 5.0%                                                                 | 26.4%                                                        | 26.3%                                                | значительно улучшает точность С1Р                                                                                                                                                                                                                                                                                                                                                                               |
| IONEX_KLOB, вклад, м                                                                                                                                                      | 1.1                                                          | 2.3                                                                  | 4.7                                                          | 6.1                                                  | на территории России (16.6%), так и                                                                                                                                                                                                                                                                                                                                                                             |
| IONEX_IAC, улучшение %                                                                                                                                                    | 17.0%                                                        | 16.6%                                                                | 35.5%                                                        | 34.0%                                                | глобально (34%).                                                                                                                                                                                                                                                                                                                                                                                                |
| IONEX_IAC, вклад, м                                                                                                                                                       | 3.0                                                          | 4.0                                                                  | 5.3                                                          | 6.8                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 |

Глобальная карта ионосферы ИАЦ значительно улучшает точность С1Р как на территории России (16.6%), так и глобально (34%).

### Вклад ионосферы в точность С1Р составляет 4.0 м на территории России и 6.8 м глобально (янв. 2023)

# Улучшение точности ГЛОНАСС С1С за счет использования параметров ионосферы (глобальная карта ИАЦ КВНО, модель Клобучара из кадра GPS)



|                         | Средние значения, ГЛОНАСС, PDOP <= 6, |            |            |             |  |
|-------------------------|---------------------------------------|------------|------------|-------------|--|
| Тип расчета             |                                       | метр       | Ы          |             |  |
| i in pacieta            | Россия, 5                             | 50 станций | Глобально, | 300 станций |  |
|                         | Медиана                               | СКП        | Медиана    | СКП         |  |
| GLO C1C                 | 5.50                                  | 7.19       | 6.99       | 9.02        |  |
| GLO C1C IONEX_KLOB      | 5.33                                  | 6.75       | 5.23       | 6.69        |  |
| GLO C1C IONEX_IAC       | 4.55                                  | 5.93       | 4.58       | 5.98        |  |
| IONEX_KLOB, улучшение % | 3.0%                                  | 6.1%       | 25.2%      | 25.9%       |  |
| IONEX_KLOB, вклад, м    | 1.3                                   | 2.5        | 4.6        | 6.1         |  |
| IONEX_IAC, улучшение %  | 17.3%                                 | 17.5%      | 34.5%      | 33.7%       |  |
| IONEX_IAC, вклад, м     | 3.1                                   | 4.1        | 5.3        | 6.8         |  |

Модель ионсоферы Клобуара <sup>ы</sup>з кадра GPS незначительно улучшает точность C1C на территории России (6%) и значительно глобально (26%).

Глобальная карта ионосферы ИАЦ КВНО значительно улучшает точность С1С как на территории России (17.5%), так и глобально (33.7%).

Вклад ионосферы в точность С1С составляет 4.1 м на территории России и 6.8 м глобально (янв. 2023)

При учете ионосферы ИАЦ точность С1С примерно одинакова как на территории России, так и глобалыно (5.9м)

### 2-ЧАСТОТНЫЙ ПОТРЕБИТЕЛЬ ГЛОНАСС: корректный учет задержки АФНС 2-частотного потребителя



| Тип расчета      | Средние значения, ГЛОНАСС,<br>PDOP <= 6, метры |      |             |  |
|------------------|------------------------------------------------|------|-------------|--|
|                  | Глобально, 300 станций                         |      |             |  |
|                  | Медиана                                        | СКП  | Доступность |  |
| GLO C1P-C2P      | 5.78                                           | 9.00 | 96.64%      |  |
| GLO C1P-C2P AFNS | 4.01                                           | 6.89 | 96.59%      |  |

ЧВП в кадре ГЛОНАСС привязаны к С1Р. Поэтому 2частотный потребитель должен к поправкам часов прибавить k2\*AФHC :

$$tsv_{C1P-C2P} = tsv_{C1P} + k_2 \cdot T_{A\Phi HC} \simeq tsv_{C1P} + 1.53 \cdot T_{A\Phi HC}$$
  
$$\gamma = \frac{f_1^2}{f_2^2} = \frac{9^2}{7^2}; \quad k_2 = \frac{1}{\gamma - 1} = 1.53125$$

Учет АФНС улучшает базовое решение С1Р-С2Р на 23% (вклад ошибки 5.8м)

Уровень доступности для 2-частотных потребителей ГЛОНАСС (96.6%) хуже, чем для одночастотных (99%) из-за существования одночастотных КА ГЛОНАСС.

### Сводная таблица. Точность местоопределения кодового решения ГЛОНАСС

| Тип расчета |         |         |         |                                    |             | Средние значения, ГЛОНАСС, PDOP <= 6, метры |                   |       |             |                        |                      |       |  |  |
|-------------|---------|---------|---------|------------------------------------|-------------|---------------------------------------------|-------------------|-------|-------------|------------------------|----------------------|-------|--|--|
|             |         |         |         |                                    |             | Россия, 50 станций                          |                   |       |             | Глобально, 300 станций |                      |       |  |  |
| IONO        | DCB     |         |         |                                    | В плане     |                                             | Пространствен ная |       | В плане     |                        | Пространствен<br>ная |       |  |  |
|             | C1P-C2P | C1C-C1P | Изм     | Название расчета                   | Медиа<br>на | СКП                                         | Медиа<br>на       | СКП   | Медиа<br>на | СКП                    | Медиа<br>на          | СКП   |  |  |
|             |         |         | C1C     | GLO C1C                            | 2.64        | 3.31                                        | 5.50              | 7.19  | 2.85        | 3.65                   | 6.99                 | 9.02  |  |  |
|             |         |         | C2C     | GLO C2C                            | 2.76        | 7.16                                        | 6.88              | 14.67 | 3.38        | 5.36                   | 10.06                | 14.31 |  |  |
|             |         | +       | C1C     | GLO C1C DCB_C1_P1                  | 2.50        | 3.16                                        | 5.24              | 6.92  | 2.72        | 3.51                   | 6.80                 | 8.82  |  |  |
|             | +       | +       | C1C     | GLO C1C DCB_C1_P1 dAFNS            | 1.96        | 2.62                                        | 4.35              | 6.07  | 2.26        | 3.02                   | 6.22                 | 8.27  |  |  |
| Klob        |         |         | C1C     | GLO C1C IONEX_KLOB                 | 2.77        | 3.41                                        | 5.33              | 6.75  | 2.85        | 3.62                   | 5.23                 | 6.69  |  |  |
| IAC         |         |         | C1C     | GLO C1C IONEX_IAC                  | 2.61        | 3.26                                        | 4.55              | 5.93  | 2.56        | 3.25                   | 4.58                 | 5.98  |  |  |
| Klob        |         | +       | C1C     | GLO C1C DCB_C1_P1 IONEX_KLOB       | 2.61        | 3.24                                        | 5.16              | 6.53  | 2.71        | 3.46                   | 5.05                 | 6.47  |  |  |
| IAC         |         | +       |         | GLO C1C DCB_C1_P1 IONEX_IAC        | 2.46        | 3.10                                        | 4.30              | 5.65  | 2.42        | 3.09                   | 4.35                 | 5.72  |  |  |
| Klob        | +       | +       | C1C     | GLO C1C DCB_C1_P1 dAFNS IONEX_KLOB | 2.03        | 2.64                                        | 4.50              | 5.81  | 2.22        | 2.94                   | 4.43                 | 5.84  |  |  |
| IAC         | +       | +       | C1C     | GLO C1C DCB_C1_P1 dAFNS IONEX_IAC  | 1.87        | 2.49                                        | 3.36              | 4.68  | 1.91        | 2.55                   | 3.61                 | 4.95  |  |  |
|             |         |         | C1P     | GLO C1P                            | 2.64        | 3.45                                        | 5.46              | 7.25  | 2.79        | 3.62                   | 6.97                 | 9.00  |  |  |
|             |         |         | C2P     | GLO C2P                            | 2.64        | 4.55                                        | 6.50              | 10.17 | 3.30        | 4.93                   | 9.81                 | 13.52 |  |  |
|             | +       |         | C1P     | GLO C1P dAFNS                      | 2.01        | 2.83                                        | 4.45              | 6.29  | 2.29        | 3.09                   | 6.33                 | 8.39  |  |  |
| Klob        |         |         | C1P     | GLO C1P IONEX_KLOB                 | 2.78        | 3.53                                        | 5.36              | 6.89  | 2.80        | 3.59                   | 5.13                 | 6.63  |  |  |
| IAC         |         |         | C1P     | GLO C1P IONEX_IAC                  | 2.63        | 3.39                                        | 4.53              | 6.05  | 2.52        | 3.24                   | 4.49                 | 5.94  |  |  |
| Klob        | +       |         | C1P     | GLO C1P dAFNS IONEX_KLOB           | 2.13        | 2.86                                        | 4.60              | 6.06  | 2.26        | 3.03                   | 4.45                 | 5.92  |  |  |
| IAC         | +       |         | C1P     | GLO C1P dAFNS IONEX_IAC            | 1.95        | 2.72                                        | 3.47              | 4.97  | 1.94        | 2.65                   | 3.66                 | 5.09  |  |  |
| Free        |         |         | C1P-C2P | GLO C1P-C2P                        |             |                                             |                   |       | 3.18        | 4.89                   | 5.78                 | 9.00  |  |  |
| Free        | +       |         | C1P-C2P | GLO C1P-C2P AFNS                   |             |                                             |                   |       | 2.16        | 3.73                   | 4.01                 | 6.89  |  |  |

- Во всех расчетах калибровка НАП не проводилась, использовались кодовые измерения, дифференциальные кодовые задержки (расчет по калиброванному приемнику), карты ионосферы ИАЦ КВНО и модель Клобучара
- Потенциальное улучшение точности одночастотного потребителя ГЛОНАСС за счет задержек, которые планируется передавать в кадре ГЛОНАСС:
  - за счет межсигнальных задержек С1С-С1Р составит 2.2% по России и 3.7% глобально (вклад ~1.9м)
  - за счет межчастотных задержек С1Р-С2Р составит 6.8% по России и 13.2% глобально (вклад ~3.5м)
- Улучшение точности L1 за счет карт ионосферы ИАЦ: по России 16% (вклад 4м), глобально 34% (вклад 6.8м)

### Сводная таблица. Точность местоопределения кодового решения GPS

| Тип расчета |       |         |                    |             | Средние значения, ГЛОНАСС, PDOP <= 6, метры |                      |      |             |           |                      |       |  |  |
|-------------|-------|---------|--------------------|-------------|---------------------------------------------|----------------------|------|-------------|-----------|----------------------|-------|--|--|
|             |       |         |                    |             | Россия                                      |                      |      |             | Глобально |                      |       |  |  |
| IONO        | Tgd   | 14000   | Название расчета   | В плане     |                                             | Пространствен<br>ная |      | В плане     |           | Пространствен<br>ная |       |  |  |
|             | L1-L2 | VI3M    |                    | Медиа<br>на | СКП                                         | Медиа<br>на          | СКП  | Медиа<br>на | СКП       | Медиа<br>на          | СКП   |  |  |
|             | +     | C1C     | GPS C1C            | 1.20        | 1.61                                        | 2.84                 | 4.48 | 1.45        | 2.19      | 5.13                 | 7.40  |  |  |
|             |       | C2C     | GPS C2C            | 2.26        | 2.74                                        | 5.25                 | 8.48 | 2.60        | 3.64      | 9.11                 | 12.27 |  |  |
|             | +     | C1W     | GPS C1W            | 1.12        | 1.55                                        | 2.65                 | 4.36 | 1.31        | 1.82      | 4.48                 | 6.30  |  |  |
|             |       | C2W     | GPS C2W            | 2.11        | 2.79                                        | 5.10                 | 7.89 | 2.55        | 3.50      | 8.67                 | 11.71 |  |  |
| Klob        | +     | C1W     | GPS C1W IONEX_KLOB | 1.01        | 1.35                                        | 3.26                 | 4.19 | 1.13        | 1.58      | 2.85                 | 3.74  |  |  |
| IAC         | +     | C1W     | GPS C1W IONEX_IAC  | 0.66        | 1.01                                        | 1.25                 | 1.90 | 0.72        | 1.06      | 1.42                 | 2.12  |  |  |
| Free        |       | C1C-C2C | GPS C1C-C2C        | 1.18        | 1.57                                        | 2.41                 | 3.24 | 1.16        | 1.56      | 2.26                 | 3.11  |  |  |
| Free        |       | C1C-C2W | GPS C1C-C2W        | 1.33        | 1.85                                        | 2.47                 | 3.52 | 1.17        | 1.53      | 2.27                 | 3.11  |  |  |
| Free        |       | C1W-C2W | GPS C1W-C2W        | 0.94        | 1.34                                        | 1.79                 | 2.56 | 0.83        | 1.17      | 1.68                 | 2.43  |  |  |

- Во всех расчетов калибровка НАП не проводилась, использовались кодовые измерения, карты ионосферы ИАЦ КВНО и модель Клобучара
- Базовая точность C1W: СКП по России 4.4 м, глобально 6.3м
- Улучшение точности GPS L1:
  - за счет карт ионосферы ИАЦ: по России 56% (вклад 3.9м), глобально 62% (вклад 4.8м)
  - за счет оперативной модели Клобучара: по России 4% (вклад 1.9м), глобально 24% (вклад 3.3м)
  - точность 2-частотного потребителя GPS (iono-free, СКП по России 2.5м, глобально 2.4м)
  - точность одночастотного потребителя GPS с использованием глобальной карты ионосферы ИАЦ по России 1.9м, глобально 2.1м

## Выводы

- Представлена схема расчета межчастотных задержек ГЛОНАСС (АФНС) при использовании калиброванного приемника ВНИИФТРИ. Погрешность значений АФНС в кадре ГЛОНАСС составляет более 0.5м, т.к. это паспортные значения. Для других ГНСС точность Tgd в кадре <= 0.1м, пересчет значений раз в 1-3 месяца.</p>
- За 24.01.2023 точность глобальных карт ионосферы ИАЦ (GIM) сопоставима с картами 3 центров IGS: СКП 0.5-0.7м (модель Клобучара ~2.1м). При пересчете GIM в карты пространственного распределения ошибки среднесуточный вклад ионосферы составил для ГЛОНАСС по России 2.7м, глобально 5.7м
- Для ФАКТИЧЕСКОЙ оценки вклада в точность ГЛОНАСС моделей ионосферы и межсигнальных С1С-С1Р и межчастотных задержек (АФНС) был проведен эксперимент с участием 300 станций за 24-31 янв. 2023:
  - Базовый расчет: С1С и С1Р примерно сравнимы (СКП Россия 7.2 м, глобально 9 м)
  - Iono-free: СКП глобально 9.0 м
  - Iono-free + корректный учет паспортного АФНС: СКП глобально 6.9 м
- Потенциальное улучшение точности (базового расчета) одночастотного потребителя ГЛОНАСС за счет задержек, которые планируется передавать в кадре ГЛОНАСС (без калибровки НАП):
  - за счет межсигнальных задержек С1С-С1Р: 2.2% по России; 3.7% глобально (вклад 1.9м)
  - за счет задержек АФНС С1Р-С2Р: 13.2% по России (вклад 3.6м); глобально 6.8% (вклад 3.2м)
- > Улучшение точности (базовый расчет) одночастотного потребителя за счет использования ионосферы:
  - ГЛОНАСС + карта ИАЦ: по России 16% (вклад 4м), глобально 34% (вклад 6.8м)
  - ГЛОНАСС + модель Клобучара: по России 5% (вклад 2.3м), глобально 26% (вклад 6м)
- Погрешность калиброванного приемника SUO\* в умеренных широтах с использованием смоделированной ЭВИ (PDOP~2.5 только 2-частотные КА) составила: С1Р с моделью ионосферы 1.2 м, С1Р-С2Р 1.5 м. Даже при полной 2-частотной ОГ ГЛОНАСС (PDOP ~ 1.9) погрешность координат С1Р идеального приемника с нулевыми шумовыми погрешностями составила бы ~0.8 м (за счет ошибок моделирования ионосферы)

# СПИСОК ИСТОЧНИКОВ

- 1. Раздел "Ионосфера" на сайте ИАЦ КВНО АО «ЦНИИмаш» [https://www.glonass-iac.ru/iono/]
- 2. Митрикас В. В., Скакун И. О., Аржанников А. А., Федотов В. Н. Применение калиброванного навигационного приемника для оценки погрешности измерения за счёт космического сегмента (SISRE) ГЛОНАСС // Альманах современной метрологии. - 2021. - № 2 (26). - С. 79–103.
- А. А. Аржанников, В. Д. Глотов, В. В. Митрикас / Вычисление дифференциальных кодовых задержек и построение карт ионосферы с помощью ГНСС // Труды ИПА РАН. 2022. Вып. 60. С. 3–11 [https://www.glonass-iac.ru/about/publications/detail.php?ID=4023]
- А. А. Аржанников, В. Д. Глотов, В. В. Митрикас, А.С. Свиридов / Влияние ионосферы на точность координатного решения потребителя, построение глобальных карт ионосферы по беззапросным измерениям ГНСС // 26-я Международная научная конференция «Системный анализ, управление и навигация» 2022 г. [https://www.glonass-iac.ru/about/publications/detail.php?ID=4000]
- 5. RINEX. The Receiver Independent Exchange Format Version 3.05. International GNSS Service. [https://files.igs.org/pub/data/format/rinex305.pdf]
- 6. Schaer S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System // Ph. D. dissertation, Astronomical Institute of the University of Bern, Switzerland, 1999. 208 p.
- 7. Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps O. Montenbruck, A. Hauschild, Deutsches Zentrum für Luft- und Raumfahrt (DLR/GSOC) P. Steigenberger, Technische Universität München (TUM/IAPG).
- 8. Li Z., Yuan Y., Li H., Ou J., Huo X. (2012) Two-step method for the determination of the differential code biases of COMPASS satellites, Journal of Geodesy, 86(11):1059-1076
- 9. Wang N., Yuan Y., Li Z., Montenbruck O., Tan B. (2016) Determination of differential code biases with multi-GNSS observations, Journal of Geodesy, 90(3): 209-228.
- 10. <u>ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/YYDDD/rapid/</u>
- 11. <u>ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/ionex/</u>